skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moreira_dos_Santos, Antonio_F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study systematically investigates the magnetic properties of the layered ferromagnet MnPt5As under pressure through a combination of experimental measurements and theoretical simulations. MnPt5As exhibits a ferromagnetic transition at approximately 301 K. Neutron diffraction measurements under applied pressures up to ∼4.9 GPa were performed over a temperature range from 320 to 100 K to probe its magnetic behavior. The results confirm that the Mn atoms maintain a ferromagnetic order under applied pressures, consistent with the ambient-pressure findings. However, magnetic anisotropy is notably suppressed. To further elucidate the compressibility of magnetic anisotropy in MnPt5As, x-ray diffraction under pressure was conducted. The results reveal that the c-axis undergoes a greater and more rapid compression compared to the ab-plane, which may contribute to the observed suppression of Mn ferromagnetic ordering along the c-axis. Additionally, theoretical calculations indicate that magnetic ordering exhibits a similar pressure-induced trend under applied pressure, supporting the experimental observations. These findings offer insights into the pressure-dependent magnetic properties and anisotropy of MnPt5As, with potential implications for strain engineering in Mn-based magnetic devices. 
    more » « less